Three Lectures on Economic Efficiency and Growth

UNIVERSITY OF ICELAND

Thorvaldur Gylfason

Outline and aims

Present a policy-oriented overview of the theory and empirical evidence of economic growth Trace linkages between economic growth and its main determinants: saving, investment, and economic efficiency Exogenous vs. endogenous growth Liberalization, stabilization, privatization Education, institutions, natural resources

Outline and aims

Lecture I Saving, efficiency, and economic growth Lecture II Economic policy and growth Lecture III Education, natural resources, institutions, and empirical evidence

Introduction

Growth theory As old as economics itself Smith, Marshall, Schumpeter, Keynes Explicit growth theory started with Harrod and Domar in 1940s Why important? Unfashionable in 1960s and 1970s Limits to growth, etc. Growth and development

Growing apart

GNP per capita

 \bigcap

InvestmentEfficiency

InstitutionsPolicy

Threefold difference after 60 years

Country B: 2% a year

Country A: 0.4% a year

Years

60

Economic growth: The short run vs. the long run

National economic output

Economic growth in the long run

Downswing

Potential output Actual output

Upswing

Business cycles in the short run

Time

Other comparisons

- 1) West-Germany vs. East-Germany
- 2) Austria vs. Czech Republic
- 3) US vs. USSR
- 4) South Korea vs. North Korea
- 5) Taiwan vs. China
- 6) Finland vs. Estonia

China vs. Europe: 1:1 in 1400 1:20 in 1989

- See my Pictures of Growth
 - www.hi.is/~gylfason/pictures2.htm

Further comparisons

- 1) Thailand vs. Burma
- 2) Mauritius vs. Madagascar
- 3) Botswana vs. Nigeria
- 4) Tunisia vs. Morocco
- 5) Spain vs. Argentina
- 6) Dominican Republic vs. Haiti

Singapore and Malaysia: GNP per capita 1962-2001

Botswana and Nigeria: GNP per capita 1962-2001

Spain and Argentina : GNP per capita 1962-2001

Mauritius and Madagascar: GNP per capita 1962-2001

Ireland and Greece: GNP per capita 1962-2001

Basic growth theory

- A. Harrod-Domar model
- B. Solow model
- C. Endogenous growth model

Harrod-Domar model

Two assumptions $g = \frac{s}{-\delta}$ S = sY Fixed saving rate K = vY Fixed capital/output ratio $g = \frac{0.21}{3} - 0.04 = 0.03$ Implications for growth S = Igross net replacement $S = sY = I = \Delta K + \delta K$ $sY = v\Delta Y + \delta vY$ ΔY $(s - \delta v)Y = v\Delta Y$

Harrod-Domar model Three propositions about growth $g = \frac{s}{v} - \delta$ $\frac{dg}{ds} > 0$ Saving increases growth $\frac{dg}{dv} < 0$ Efficiency increases growth v = K/Y1/v = Y/K $\frac{dg}{d\delta} < 0$ Depreciation reduces growth

Solow model

Two equations in two unknowns, y and k

$$y = Ak^{1-a}$$

$$y = \left(\frac{n+\delta}{s}\right)k$$

$$k = \left(\frac{sA}{n+\delta}\right)^{\frac{1}{a}}$$

$$y = \left(\frac{s}{n+\delta}\right)^{\frac{1-a}{a}} A^{\frac{1}{a}}$$

Long-run equilibrium

$$\begin{aligned}
& \text{Closed-form solution to} \\
& \text{Solow model}
\end{aligned}$$

$$\begin{aligned}
& \Delta \hat{k} = \Delta \left(\frac{K}{AL}\right) = \frac{\Delta K}{AL} - \left(\frac{K}{A^2 L^2}\right) \Delta (AL) = s\hat{y} - \delta \hat{k} - n\hat{k} - q\hat{k} \\
& s\hat{k} = \frac{\Delta \hat{k}}{\hat{k}} = s \left(\frac{\hat{y}}{\hat{k}}\right) - \delta - n - q = s\hat{k}^{-a} - \delta - n - q \\
& \left[\frac{\Delta \hat{k}}{\hat{k}} + (\delta + n + q)\right] \hat{k}^a = s \\
& \Delta \hat{k} \cdot \hat{k}^{-(1-a)} + (\delta + n + q) \hat{k}^a = s
\end{aligned}$$

Cold States of Land

W-177765

Closed-form solution to
Solve model

$$\lim_{t \to \infty} \hat{k} = \left(\frac{s}{\delta + n + q}\right)^{\frac{1}{a}}$$

$$\lim_{t \to \infty} \hat{y} = \left(\frac{s}{\delta + n + q}\right)^{\frac{1-a}{a}}$$

$$\lim_{t \to \infty} y = \lim_{t \to \infty} \left(\frac{Y}{L}\right) = A\left(\frac{s}{\delta + n + q}\right)^{\frac{1-a}{a}} = A_0 e^{at} \left(\frac{s}{\delta + n + q}\right)^{\frac{1-a}{a}}$$

Solow model:

$$\Delta \hat{k} \approx -a(n+q+\delta)\hat{k}$$

$$\Delta \hat{k} \approx -0.7(0.01+0.01+0.04)\hat{k} = -0.7 \cdot 0.06 \cdot k = -0.04\hat{k}$$

$$e^{-0.04t} = 0.5 \Rightarrow t = 17 \text{ Takes 17 years to close half the gap}$$

$$e^{-0.04t} = 0.8 \Rightarrow t = 40$$
Takes 40 years to close 80% of the gap

del

Cart State

 $y = Ak^{1-a}$

Output per head

Rich country's initial income per head

Poor country's Initial income per head Poor country must grow faster if it is to catch up

Capital per worker

An Increase in the Saving Rate Output per head

Capital per worker

An Increase in Population Growth or Depreciation

Dutput per head

An Increase in Dynamic Efficiency (Technical Progress)

Capital per worker

Solow model: Conclusion

Three main points to note Long-run growth is exogenous: g = n + qNo role for economic forces, policy or institutions, just technology But education is good for growth Model implies convergence Poor countries grow more rapidly than rich The medium term can be quite long Growth is endogenous for a long while

Solow model with education

$$Y = (AH)^a K^{1-a}$$
 H = skilled labor

 $H = Le^{bt}$ L = raw labor, b = years of schooling

AH grows at n + q + b

$$g = n + q + b$$

 $\frac{dg}{ds} = 0$

Education stimulates long-run growth

The Constant of the second

Endogenous growth

transperious Theman

Population growth

Technological progress, q

Let's take four examples

A tax on education and endogenous growth

$$Y = \sqrt{AGK}$$

G = tK G is financed by tax on capital Constant returns to capital

$$Y = \sqrt{At K} = EK$$

$$E = \sqrt{At}$$

$$g = s\sqrt{At} - \delta$$

A tax to finance education is good for growth

G = government spending on education

Inflation, money, and endogenous growth

Let's look at some evidence, but first ...

How growth becomes endogenous

Solow model: when s rises, E = Y/K falls due to decreasing returns to capital, so g stays put

 $Y = (AL)^{a} K^{1-a} \qquad y = Ak^{1-a} \qquad \frac{y}{k} = Ak^{-a}$

Y = EK

Endogenous growth: when s rises, E stays put due to constant returns to capital, so g rises

$$\frac{Y}{K} = \frac{y}{k} = E \neq f(k)$$

Empirical growth research

Cross-country regressions 1) Large samples, beginning in 1960 or 1970 Cross sections vs. panels 2) 3) Averages vs. initial values of independent variables Cost of simultaneity bias vs. cost of discarding available data **Recursive modeling vs. instruments** 4) Levels of income vs. rates of growth

Recursive modeling

Growth regression (1) $g = a_0 - a_1 y_0 + a_2 x + a_3 z$ where x is exogenous and z is endogenous $z = b_0 + b_1 y_0 - b_2 x$ (2)where z is, say, education and x is natural resource reliance Eq. (2) makes z exogenous, so (1) and (2) can be estimated by OLS TSLS calls for instruments that help explain z without being correlated with g: Not easy

 $g = a - by_0 + cx$

 $g = a - by_0 + cx$ $y = y_0 + T \ln(1 + \frac{g}{100}) \approx y_0 + T(\frac{g}{100})$

 $g = a - by_0 + cx$ $y = y_0 + T \ln(1 + \frac{g}{100}) \approx y_0 + T(\frac{g}{100})$ $y = y_0 + \frac{T}{100}(a - by_0 + cx)$

 $g = a - by_0 + cx$ $y = y_0 + T \ln(1 + \frac{g}{100}) \approx y_0 + T(\frac{g}{100})$ $y = y_0 + \frac{T}{100}(a - by_0 + cx)$ $y = \alpha + \beta y_0 + \gamma x \qquad \alpha = a\frac{T}{100} \qquad \gamma = c\frac{T}{100}$

Levels of income vs. rates of growth Conditional convergence

requires $b > 0 \implies \beta < 1$ $g = a - by_0 + cx$ $y = y_0 + T \ln(1 + \frac{g}{100}) \approx y_0 + T(\frac{g}{100})$ $y = y_0 + \frac{T}{100}(a - by_0 + cx)$ $y = \alpha + \beta y_0 + \gamma x$ $\alpha = a \frac{T}{100}$ $\gamma = c \frac{T}{100}$ One-to-one correspondence $\beta = 1 - b \frac{T}{100}$ between parameters

Absolute convergence: Growth rates

Same and a state

Absolute convergence: Levels of income

From efficiency to growth

Basic result If it – anything! – increases economic efficiency, it is also good for growth Follows from Harrod-Domar model as well as from endogenous-growth theory and also, as a proposition about the medium run, from the Solow model In practice, Solow model and endogenous growth are hard to distinguish So, let's look more closely at efficiency

Welfare

gain

Productivity

Η

World price

ratio

gain

Traditional output

0

AB = static gain BC = dynamic gain AC = AB + BC = total gain F

Modern output

A

G

B

Stabilization Increases Economic Efficiency

Privatization Increases Economic Efficiency

From efficiency to growth: Same story time and again

□ Free trade is good for growth

Reduces the inefficiency that results from restrictions on trade

Price stability is good for growth

Reduces inefficiency resulting from inflation

Privatization is good for growth

Reduces inefficiency resulting from SOEs

Education is good for growth

 Reduces the inefficiency that results from inadequate education

Investment and growth, 1965-1998

r = rank correlation

85 countries

Education and growth,

A 25 point increase in secondaryschool enrolment goes along with an increase in per capita growth by 1% per year

Ghana

r = 0.72

1965-1998

6

Δ

-6

-8

Diminishing returns: The additional benefit from education becomes smaller as enrolment increases

87 countries

Secondary-school enrolment 1980-97 (%)

Natural resources and growth, 1965-1998

85 countries

Democracy and growth, 1965-1998

Growth of GDP per capita 1960-2000, adjusted for initial income (% per year)

Index of democracy 1960-2000

Democracy and growth go together

> Now, let's run some regressions

144 countries

Growth regressions

Based on World Bank data World Development Indicators, published each year on CD Wide coverage: 208 countries, 42 years Could also use Penn data (compiled by Summers and Heston), but they cover fewer countries Here, we report cross-sectional evidence, representing each country by a single observation for each variable

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 21:53 Sample: 1801 1982 Included observations: 153 Excluded observations; 29

POLITY2 describes democracy on a scale from -10 to 10

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C POLITY2	1.339150 0.067124	0.192393 0.029920	6.960481 2.243448	0.0000 0.0263
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.025847 0.025847 2.379089 854.6696 -348.6988 2.210685	Mean depend S.D. depende Akaike info ci Schwarz crite F-statistic Prob(F-statis	lent ∨ar ent ∨ar riterion erion tic)	1.349504 2.410445 4.584298 4.623912 5.033060 0.026323

Keep an eye on the number of observations

An increase in democracy by 15 points (e.g., from –7 to 8) increases growth by 1 percentage point

_ 8 × 🖪

_ 8 ×

Path = c:\gogn\excel DB = none WF = democracy3

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 21:55 Sample(adjusted): 1802 1982 Included observations: 144 INITIAL is the log of per capita GNP in 1960, so the coefficient describes the speed of convergence

Excluded observations: 37 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	11.20680	1.202970	9.315946	0.0000
POLITY2	0.185116	0.027973	6.617587	0.0000
INITIAL	-1.266962	0.152676	-8.298396	0.0000
R-squared	0.357498	Mean dependent var		1.353713
Adjusted R-squared	0.348384	S.D. dependent var		2.354045
S.E. of regression	1.900249	Akaike info criterion		4.142460
Sum squared resid	509.1435	Schwarz criterion		4.204331
Log likelihood	-295.2571	F-statistic		39.22724
Durbin-Watson stat	2.134033	Prob(F-statistic)		0.000000

_ 8 × 🖪

Office

_ 8 ×

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 21:57 Sample(adjusted): 1802 1982 Included observations: 139

PRIMGDP is the share of primary production in GDP

Excluded observations: 42 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C POLITY2	16.71572 0.111311	1.548189	10.79695 3.698155	0.0000
PRIMGDP	-0.072699	0.014432	-5.037342	0.0000
R-squared Adjusted R-squared S.E. of regression	0.461952 0.449995 1.771329 423.5768	Mean dependent ∨ar S.D. dependent ∨ar Akaike info criterion		1.339995 2.388449 4.009692
Log likelihood Durbin-Watson stat	-274.6736 2.253704	F-statistic Prob(F-statistic)		38.63561 0.000000

An increase in the share of primary production in GDP by 14% increases growth by 1 percentage point

_ 8 × 🖪

_ 8 ×

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 22:00 Sample(adjusted): 1802 1982 Included observations: 139

INVEST is the ratio of investment to GDP

Excluded observations: 42 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	14.48529	1.510117	9.592160	0.0000
POLITY2	0.117000	0.027948	4.186301	0.0001
INITIAL	-1.703641	0.148712	-11.45597	0.0000
PRIMGDP	-0.065578	0.013471	-4.867990	0.0000
INVEST	0.111835	0.023390	4.781333	0.0000
R-squared	0.540368	Mean depend	dent ∨ar	1.339995
Adjusted R-squared	0.526647	S.D. depende	ent ∨ar	2.388449
S.E. of regression	1.643268	Akaike info c	riterion	3.866559
Sum squared resid	361.8442	Schwarz crite	erion	3.972116
Log likelihood	-263.7259	F-statistic		39.38432
Durbin-Watson stat	2.137384	Prob(F-statis	stic)	0.000000

An increase in investment by 9% of GDP increases growth by 1 percentage point

_ 8 × 5

_ 8 ×

Path = c:\gogn\excel DB = none WF = democracy3

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 22:06 Sample(adjusted): 1802 1981 Included observations: 115

LOGENROL is the log of secondary-school enrolment (net)

Excluded observations: 64 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.45627	1.688709	6.191874	0.0000
POLITY2	0.089814	0.027600	3.254126	0.0015
INITIAL	-1.651977	0.182615	-9.046244	0.0000
PRIMGDP	-0.033343	0.014653	-2.275528	0.0248
INVEST	0.087131	0.027998	3.112047	0.0024
LOGENROL	0.939072	0.268293	3.500178	0.0007
R-squared	9.546919	Mean depend	dent ∨ar	1.755804
Adjusted R-squared	0.526136	S.D. dependent ∨ar		2.143686
S.E. of regression	1.475666	Akaike info criterion		3.666860
Sum squared resid	237.3573	Schwarz criterion		3.810073
Log likelihood	-204.8444	F-statistic		26.31506
Durbin-Watson stat	2.070500	Prob(F-statis	stic)	0.000000

An increase in secondary-school enrolment by 100% (e.g., from 40% to 80%) increases growth by nearly 1 percentage point

_ 8 × 5

_ 8 ×

Path = c:\gogn\excel DB = none WF = democracy3

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 22:03 Sample(adjusted): 1803 1981 Included observations: 115

DISTORT = $\pi/(1+\pi)$

Excluded observations: 64 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.08850	1.552197	6.499496	0.0000
POLITY2	0.066783	0.025821	2.586361	0.0110
INITIAL	-1.551798	0.169028	-9.180730	0.0000
PRIMGDP	-0.031080	0.013460	-2.309149	0.0228
INVEST	0.069217	0.025992	2.663073	0.0089
LOGENROL	1.070840	0.247925	4.319206	0.0000
DISTORT	-2.752835	0.595696	-4.621209	0.0000
R-squared	0.621719	Mean depen	dent ∨ar	1.755804
Adjusted R-squared	0.600704	S.D. depende	ent ∨ar	2.143686
S.E. of regression	1.354593	Akaike info criterion		3.503817
Sum squared resid	198.1715	Schwarz criterion		3.670900
Log likelihood	-194.4695	F-statistic		29.58373
Durbin-Watson stat	2.264302	Prob(F-statis	stic)	0.000000

A decrease in inflation from 50% to zero increases growth by nearly 1 percentage point Path-olyggricket DB = hone WF = democracy3

_ 8 × 🖪

_ 8 ×

Dependent Variable: GROW Method: Least Squares Date: 10/05/03 Time: 22:08 Sample(adjusted): 1803 1981 Included observations: 115

DUMMYAFR is a dummy for sub-Saharan Africa

Excluded observations: 64 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C POLITY2 INITIAL PRIMGDP INVEST LOGENROL DISTORT DUMMYAFR	11.56470 0.067523 -1.593635 -0.029696 0.063342 0.837612 -2.905384 -0.864473	1.685289 0.025434 0.167688 0.013273 0.025755 0.268669 0.591273 0.415327	6.862145 2.654822 -9.503576 -2.237247 2.459432 3.117641 -4.913778 -2.081429	0.0000 0.0091 0.0000 0.0273 0.0155 0.0023 0.0000 0.0398
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	9.636440 0.612055 1.334166 190.4600 -192.1872 2.291853	Mean depend S.D. depend Akaike info o Schwarz crite F-statistic Prob(F-statistic	dent var ent var riterion erion	1.755804 2.143686 3.481517 3.672469 26.75879 0.000000

_ 8 × 🗄

Office

_ 8 ×

Path = c:\gogn\excel DB = none WF = democracy3
File Edit Objects View Procs Quick Options Window Help View Procs Objects Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: LOG(GNP) Method: Least Squares Date: 10/06/03 Time: 12:26 Sample(adjusted): 1803 1981 Included observations: 115

Dependent variable is now the level of per capita GNP: same story

Excluded observations: 64 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	4.657236	0.653850	7.122790	0.0000
POLITY2	0.926690	0.009868	2.70474	0.0080
INITIAL	0.371939	0.065059	5.716969	0.0000
PRIMGDP	-0.012494	0.005150	-2.426172	0.0169
INVEST	0.023980	0.009992	2.399885	0.0181
LOGENROL	0.316652	0.104237	3.037821	0.0030
DISTORT	-1.163443	0.229399	-5.071697	0.0000
DUMMYAFR	-0.357443	0.161136	-2.218262	0.0286
R-squared	0.823025	Mean dependent ∨ar		8.466503
Adjusted R-squared	0.811147	S.D. dependent ∨ar		1.192057
S.E. of regression	0.517623	Akaike info criterion		1.587889
Sum squared resid	28.66892	Schwarz criterion		1.778841
Log likelihood	-83.30361	F-statistic		71.08636
Durbin-Watson stat	2.261577	Prob(F-statistic)		0.000000

Conditional convergence, as before

_ 8 × 🖪

_ B ×

Nicrosof

▲ ** File Edit Objects View Procs Quick Options Window Help View Procs Objects Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: GROW Method: Least Squares Date: 10/06/03 Time: 21:35 Sample(adjusted): 1803 1981 Included observations: 110

BIRTHS is the number of births attended by skilled medical staff (%)

Excluded observations: 69 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C POLITY2 INITIAL PRIMGDP INVEST LOGENROL DISTORT BIRTHS	11.58871 0.051215 -1.844368 -0.026061 0.059438 0.812460 -2.848583 0.025410	1.533163 0.024935 0.177785 0.012736 0.025364 0.262417 0.577490 0.009002	7.558698 2.053971 -10.37416 -2.046150 2.343432 3.096067 -4.932696 2.822730	0.0000 0.0425 0.0000 0.0433 0.0210 0.0025 0.0000 0.0057	BIRTHS makes African dummy redundant
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.679007 0.656978 1.266730 163.6696 -177.9386 2.270068	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		1.769567 2.162831 3.380701 3.577100 30.82336 0.000000	

_ 8 × 🗄

ffice

_ 8 ×

🗱 EViews - [System: SYS03 | Workfile: DEMOCRACY3]

🔲 File Edit Objects View Procs Quick Options Window Help

View Procs Objects | Print Name Freeze | MergeText Estimate Spec Stats Resids

Grand finale

_ 8 × 8

_ 8 ×

System: SYS03

Estimation Method: Seemingly Unrelated Regression

- Date: 10/07/03 Time: 18:37
- Sample: 1801 1982
- Included observations: 153

Dependent variable: per capita growth 1960-2000, R² = 0.68

Total system (unbalanced) observations 650 Linear estimation after one-step weighting matrix

Effects of	Coefficient	Std. Error	t-Statistic	Prob.	
democrac	11.58871	1.476359	7.849523	0.0000	
C(2)	0.051215	0.024011	2.132999	0.0333	(
C(3)	-1.644368	0.171198	-10.77331	0.0000	
C(4)	-0.026061	0.012265	-2.124877	0.0340	
C(5)	0.059438	0.024424	2.433597	0.0152	
C(6)	0.812460	0.252694	3.215189	0.0014	
C(7)	-2.848583	0.556094	-5.122484	0.0000	
C(8)	0.025410	0.008668	2.931336	0.0035	_
C(11)	22.85419	0.484963	45.47605	0.0000	1
C(14)	0.222350	0.075010	2.964292	0.0031	
C(21)	1.403888	0.558277	2.514680	0.0122	F
C(22)	0.024/009	0.010280	2.335495	0.0198	
C(23)	0.340197	0.057659	5.900158	0.0000	
C(24)	-0.017155	0.005112	-3.355633	0.0008	_
C(31)	-23.75710	14.34675	-1.655922	0.0982	L
C(32)	0.789133	0.292741	2.695667	0.0072	
C(33)	13.80748	1.476646	9.350570	0.0000	
C(34)	-0.401443	0.132942	-3.019691	0.0026	-
C(41)	1.364558	4.320161	0.315858	0.7522	Г
C(42)	0.924296	0.439470	2.103207	0.0358	L
C(43)	-0.226565	0.035544	-6.374173	0.0000	
Determinant residual	covariance	97081.89			

If Panama became like Costa Rica, growth would rise by 1%

Growth equation

Total effect of democracy on growth is 0.051 + 0.013 + 0.019 + 0.020 = 0.103

Investment equation
Education equation

Health equation

Democracy equation

Path = c:\gogn\excel DB = none WF = democracy3

EViews - [System: SYS03 Workfile: DEMOC File Edit Objects View Procs Quick Opt View Procs Objects Print Name Freeze Merge	RACY3] ions Window Help Text Estimate Spec Sta	ats Resids		Grand finale	_ 8 × 8
System: SYS03 Estimation Method: Seemingly Unrelated Regression Date: 10/07/03 Time: 18:37 Sample: 1801 1982 Included observations: 153 Total system (unbalanced) observations 650 Linear estimation after one-step weighting matrix Effect of primary production on					
Effects of Coefficier	nt Std. Error	t-Statistic	Prob.	growth	
natural 11.5887	1 1.476359 5 0.024011	7.849523 2.132999	0.0000	Growth equation	8
C(4) C(4) C(5) C(6) C(7) -1.84436 -0.02606 0.05943 0.05943 -0.02606 0.05943 -0.02606 0.05943 -0.81246 -2.84858	8 0.171198 1 0.012265 8 0.024424 0 0.252694 3 0.556094	-10.77331 -2.124877 2.433597 3.215189 -5 122484	0.0000 0.0340 0.0152 0.0014 0.0000	Total effect of primary share on growth is 0.026 + 0.014 + 0.010 + 0.012 = 0.062	
C(8) 0.02541 C(11) 22.0541	0 0.008668 9 0.484963	2.931336 45.47605	0.0035	Investment equation	
C(14) 0.22235 C(21) 1.40388 C(22) 0.02400	0 0.075010 8 0.558277 9 0.010280	2.964292 2.514680 2.335495	0.0031 0.0122 0.0198	Education equation	
C(23) 0.34019 C(24) -0.017)5	7 0.057659 5 0.005112	5.900158 -3.355633	0.0000 0.0008		
C(31) 23.7571 C(32) 0.78913 C(33) 13.8974	0 14.34675 3 0.292741 8 1.476646	-1.655922 2.695667 9.350570	0.0982 0.0072 0.0000	Health equation	
C(34) -0.40144 C(41) 1.36455 C(42) 0.92429 C(43) -0.22656	3 0.132942 8 4.320161 6 0.439470 5 0.035544	-3.019691 0.315858 2.103207 -6.374173	0.0026 0.7522 0.0358 0.0000	Democracy equation	
Determinant residual covariance	97081.89			Path = c:\gogn\excel DB = none WF = 0	 democracy3

Conclusion

Saving and efficiency are good for growth Efficiency gains take many different forms Liberalization, stabilization, privatization Conversion of inputs into output is not solely a matter of technology, but also efficiency, so economic policy matters

